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Chaos control techniques exploit the sensitivity of chaos to initial conditions by applying feedback pertur-
bations to an accessible system parameter. Most methods apply only one perturbation per period and are thus
susceptible to control failure when applied to highly unstable systems. Here we extend a recently developed
model-independent, quasicontinuous chaos control technique to stabilize a high-dimensional chaotic system:
the driven double pendulum.@S1063-651X~96!12011-0#

PACS number~s!: 05.45.1b, 07.05.Dz

The widespread existence of chaotic dynamics in physical
systems has fostered great interest in the development of
practical chaos control techniques. The original feedback
chaos control technique developed by Ott, Grebogi, and
Yorke @1# is based on the fact that there is an infinite number
of unstable periodic orbits~UPO’s! embedded within a cha-
otic attractor. The Ott-Grebogi-Yorke~OGY! approach ex-
ploits the sensitivity of chaos to initial conditions by making
small time-dependent perturbations to an accessible system
wide parameter such that the system’s state point is attracted
towards the stable direction of a targeted UPO. The OGY
technique is practical from an experimental standpoint be-
cause it requires no analytical model of the system: all nec-
essary dynamics are estimated from time series measure-
ments made on the system.

The OGY approach and similar model-independent feed-
back control techniques have been successfully used to con-
trol a wide range of experimental systems@2#. However, be-
cause the OGY technique is limited to the control of low-
dimensional systems, it is not applicable to the majority of
real-world ~i.e., high-dimensional! systems. Several high-
dimensional control algorithms@3#, including one recently
used to control a magnetoelastic ribbon in a state of high-
dimensional chaos@4,5#, have been developed to overcome
this limitation. However, because these techniques, like the
OGY approach, apply control perturbations only once per
period, amplification of noise and measurement errors by
highly unstable systems may lead to control failure@6#. Re-
cently, a quasicontinuous chaos control technique known as
the local control method@6,7# has been developed to reduce
the likelihood of control failure by applying several control
perturbations per period. This model-independent technique
has been successfully used to control two low-dimensional
chaotic systems: a driven single pendulum@7,8# and a driven
bronze ribbon@7#. In this study, we extend the local control
method to stabilize a high-dimensional chaotic system: the
driven double pendulum.

During each drive period, the local control method at-
tempts to stabilize a targeted UPO by applyingN control
perturbationsdp to an accessible parameterp, such that
p5 p̄1dp, where p̄ is the initial value ofp. To determine
the perturbations required to stabilize the targeted UPO, this
method introduces N successive Poincare´ sections

Sn,n50, . . . ,(N21), whereSn is intersected byzn, the
nth system state vector. The local control method developed
in Refs.@6,7# utilizes a state vector that is entirely comprised
of measured variables. Here we extend the method by using
time delay coordinates@9#, wherezn is comprised of both
current and former values of measured variables. With time
delay coordinates,zn11 is a function ofzn and all values of
p during the delay lagm ~i.e., pn,pn21, . . . ,pn2m11) @10#.
Thus the mappingP(n,n11) from Sn to Sn11 is

zn115P~n,n11!~zn,pn,pn21, . . . ,pn2m11!. ~1!

Settingdzn5zn2zF
n wherezF

nPSn is the intersection of
the UPO with Sn, the linear approximation ofP(n,n11)

aroundzF
n and p̄ gives

dzn115Andzn1 (
j50

m21

wj
ndpn2 j , ~2!

where

An5DznP
~n,n11!~zF

n ,p̄!, ~3!

wj
n5

dP~n,n11!~zF
n ,p̄!

dpn2 j . ~4!

The Jacobian matrixAn represents the linearization of
P(n,n11) aroundzF

n while wj
n are vectors that measure the

sensitivity ofP(n,n11) to current (j50) and former (j.0)
parameter perturbations.

Computation of the local control parameter perturbation
dp utilizes the fact thatAn deforms a hypersphere surround-
ing zF

n in Sn into a hyperellipsoid surroundingzF
n11 in

Sn11. Singular value decomposition of An

(An5UnWnVnT, where the superscriptT denotes transpose!
is used to obtain theSn hypersphere vectorvu

n ~the direction
of maximal stretching!, which is mapped onto the largest
axis of theSn11 hyperellipsoid. Thus the vectorvu

n is the
column vector ofVn corresponding to the largest singular
valuemu

n of Wn. Oncezn enters into the hypersphere neigh-
borhood surroundingzF

n the local control method attempts to
constrain the system within the target UPO by selecting
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dpn such that the projection ofdz onto vu decreases by a
factor of (12r) during each control step, i.e.,

vu
n11Tdzn115~12r!vu

nTdzn. ~5!

Thus the local control formula is obtained by inserting Eq.
~5! into Eq. ~2!:

dpn5

~12r!vu
nTdzn2vu

n11TS Andzn1 (
j50

m21

wj
ndpn2 j D

vu
n11Tw0

n .

~6!

As in Ref. @7#, we limit the applied perturbation to
udpnu<dpmax @11#, i.e.,

dpn5H dpn for udpnu<dpmax
sgn~dpn!dpmax for udpnu.dpmax.

~7!

The setup for the driven double pendulum control experi-
ment is shown in Fig. 1. The electric drive motor is powered
by a sinusoidal voltageV(t)5Asin(2pft)1p. For this ex-
periment,A51.3 V, f51.2 Hz, andp is a dc torque that is
used as the accessible control parameter (p̄50.0 V!. The
angular velocityu̇ i of the inner pendulum is measured by an
electronic circuit connected to the voltage output of a gen-

erator, whose axle is linked to the axle of the drive motor.

The electronic circuit then integratesu̇ i to provide the inner
pendulum angleu i . Whenever the pendulum swings through
u i50, a vertical line on the back of the inner pendulum arm
is detected by a bar-code reader. The bar-code reader triggers
an integration reset (u i50) to constrain22p,u i,2p. The
u̇ i , u i , andV signals are scanned via analog-to-digital con-
version into a PowerMacintosh 7100/80 computer at a sam-
pling rate ofNf (N520), the same rate at which control
perturbationsdp are returned via digital-to-analog conver-
sion from the computer to the drive motor.

To locate the target UPO on which control was to be
attempted,u̇ i and u i were recorded from the driven double
pendulum for 7500 drive cycles withdp50.0 V. The driven
double pendulum has five degrees of freedom~the drive
phaseu̇ i , u i , u̇o, and uo , where u̇o and uo represent the
angular velocity and angle of the outer pendulum, respec-
tively!. In this experiment,u̇o anduo were not available via
measurement. Thus we used a time-delay coordinate embed-
ding, comprised of two$u̇ i , u i% pairs, to reconstruct the pen-
dulum dynamics:zn5( u̇ i

n,u i
n ,u̇ i

n2m ,u i
n2m)T, wherem55.

~This value was selected because the first minimum in the
mutual information@12# for u̇ i occurred at five samples.! The
method of false nearest neighbors@13# indicated that using
three$u̇ i , u i% pairs for the time-delay embedding produced
the optimal attractor reconstruction~false nearest-neighbor
percentage of 8.0%!. However, this was only a 2.7% im-
provement over using two$u̇ i , u i% pairs for the time-delay
embedding~false nearest-neighbor percentage of 10.7%!.
Consequently, we used two$u̇ i , u i% pairs for the time-delay
embedding in order to reduce the complexity of the control
intervention computations@Eq. ~6!#. The entire data record
was searched for period-1 orbits, i.e., segments of the time
series that satisfied u( u̇ i

n2 u̇ i
n1N)/ u̇ i

nu,0.025 and
u(u i

n2u i
n1N)/u i

nu,0.025. Because more than one unique
UPO can exist for a given period, each period-1 orbit was
classified as either~i! a unique orbit or~ii ! a recurrence of a
previously identified orbit. An orbit was considered recurrent
if it had the same drive phase as a previously identified orbit
and if each of itsu̇ i

n andu i
n were within 5% of those of the

previously identified orbit. Each orbit with at least ten recur-
rences was considered to be a valid UPO. The components
zF
n of each valid UPO were computed as the averages of all

recurrences ofu̇ i
n, u i

n u̇ i
n2m andu i

n2m . Figure 2 shows the
double pendulum’s libration UPO, which was selected for
control in this study because it had more recurrences~215
recurrences! than any other UPO.

The Jacobian matrices and sensitivity vectors of Eq.~6!
were estimated from a second recording during which a
single dp perturbation was applied each period@14#. The
duration of each perturbation was 1/(Nf) ~i.e., 0.04 s, which
was the same duration used during control! and each ampli-
tude was randomly selected as20.3,20.15, 0.0,10.15, or
10.3 V. During the recording, the application of the pertur-
bations was timed such that eachnPN received 3500 per-
turbations. After the recording, the Jacobian matrices and
sensitivity vectors were estimated from the nearest neighbors
of eachzF

n . Because the sensitivity vectors are only affected

FIG. 1. Schematic of the driven double pendulum setup. The
inner and outer pendulums are aluminum bars weighted on one end
~the distal end!. Each pendulum has full rotational freedom about an
axis passing through its proximal end. The outer pendulum’s rota-
tional axis passes through the center of the inner pendulum weight
and is in the same direction as an electric motor axle that serves as
the inner pendulum rotational axis. The electric motor generates an
external torque that is dependent on a sinusoidal drive voltage

V(t)5Asin(2pft)1p. The angular velocityu̇ i of the inner pendu-
lum is measured by a generator whose axle is linked to the axle of

the motor. Theu̇ i signal is integrated by an electronic circuit~not
shown! to provide the inner pendulum angleu i .
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by perturbations that occur during the delay lagm, the
nearest-neighbor search was limited to those vectors that fol-
lowed an applied perturbation by fewer thanm lags. For each
nPN, the 40 nearest neighbors ofzF

n , their corresponding
zF
n11 and the corresponding perturbationsdpn2 j ~where j
equals the number of scans between the perturbation and the
nearest neighbor! were simultaneously fit to Eq.~2! to esti-
mateAn andwj

n ( j50,1, . . . ,m21).
The Lyapunov numbers (l15138.0,l2522.8,l350.3,

andl451.031024) @15# for the target UPO shown in Fig. 2
indicate that the orbit has two unstable directions@16#. Fig-
ure 3 shows the singular valuesmn for eachAn of the target
UPO. The variation of the singular values around the orbit
indicates that orbit stability is dependent onn. For eachn
PN, there are at least two unstable directions (m.1.0). It
should also be noted that each of theAn Jacobian matrices
estimated from Eq.~2! was characterized by at least two
complex eigenvalues. Thus a local control approach that em-
ploys eigenvalues, rather than singular value decomposition,
would be inappropriate for this system and other systems
with complex eigenvalues forAn.

Figure 4 shows local control of the inner pendulum angu-
lar velocity, along with the corresponding parameter pertur-
bations, for the target UPO shown in Fig. 2. Control initia-
tion occurred when zn entered into the hypersphere

surroundingzF
n . The initial size of the hypersphere~corre-

sponding to a maximum allowable parameter perturbation of
dpmax50.2 V! was selected to allow a timely entry into the
zF
n neighborhood. Once control was obtained,dpmaxwas uni-
formly decreased to a value of approximately 5% of the
drive amplitudeA. Control could be maintained indefinitely,
even with these small perturbations. The stabilized orbit
never exactly matched the target UPO.~This was consistent
with Ref. @7#.! Thus the control perturbations computed by
Eq. ~6! consistently exceededdpmax and were capped by Eq.
~7!. Once control was turned off, the double pendulum
quickly resumed its chaotic motion~Fig. 4!.

In order to demonstrate the robustness of control, ‘‘mea-
surement’’ noise was added to each component ofzn, i.e.,
zn5( u̇ i

n1ej1
n ,u i

n1ej2
n ,u̇ i

n2m1ej3
n ,u i

n2m1ej4
n)T, where

j1
n ,j2

n ,j3
n , and j4

n are independent random variables uni-
formly distributed in @21,1# and e is a constant. At
dpmax50.06 V, control could be maintained indefinitely for
e50.05A. Interestingly, control could also be maintained~in
the absence of additive noise! even if former perturbations
were excluded from Eq.~6!, i.e.,wj

n50 for j.0, thus fur-
ther indicating the robustness of the local control method.

FIG. 2. Libration unstable periodic orbit~UPO!, shown in the

u i-u̇ i plane, for the driven double pendulum of Fig. 1.

FIG. 3. Singular valuesmn of An for the UPO shown in Fig. 2.
Values ofm.1.0 indicate an unstable~expanding! direction, while
values ofm,1.0 indicate a stable~contracting! direction. The larg-
est singular valuemu

n corresponds to the direction of maximum
stretching.

FIG. 4. Local control of the UPO shown in Fig. 2.~a! u̇ i
0 ~i.e.,

u̇ i for the first Poincare´ sectionS0) versus cycle numberk. ~b!
Absolute value of the corresponding control perturbationsdp0 com-
puted by Eqs.~6! and ~7! with r50.15. The duration of each per-
turbation was 0.04 s. Control was inactive (dp50.0) until zn en-
tered into the hypersphere neighborhood surroundingzF

n at k577.
Control was then activated withdpmax50.2 V. Subsequently,
dpmax was uniformly decreased todpmax50.06 V. At k5450, con-
trol was turned off and the double pendulum resumed its chaotic
motion. The respective control stages are annotated in~a! and ~b!.
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In this study, we have demonstrated that a delay coordi-
nate extension of the local control method can be used to
control an experimental high-dimensional chaotic system.
These developments may further open up real-world appli-
cations of chaos control. For example, the approach used in
the present study may be particularly appropriate for me-

chanical and biological@17# systems, which are often high
dimensional.

This work was supported by the National Science Foun-
dation ~J.J.C. and D.J.C.! and the Office of Naval Research
~P.S.L.!.
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